朱灵,男,1965年1月生,无党派,教授。1985年毕业于浙江师范大学数学系。主要研究方向:数值分析中的并行圆盘迭代、解析不等式。2006年晋升为教授。2003年获浙江工商大学首届教学名师称号同年获校教书育人春蚕奖,2005年获浙江省“挑战杯”优秀指导教师称号,2007年获浙江省首届高等学校教坛新秀荣誉称号,2008年获2007-2008年度浙江省高校“三育人”先进个人荣誉称号。
指导本科学生发表四篇SCI论文。本科学生章陆、刘海平的两篇论文在其指导下在SCI期刊MIA和JIA上发表,刘海平因此获第二届中国青少年科技创新奖,章陆、刘海平等获全国第九届“挑战杯”二等奖。孙金钜同学的文章发表在SCI期刊CAM上,获第十届“挑战杯”三等奖。潘文海同学的论文在SCI期刊JIA发表,同时获全国第十一届“挑战杯”二等奖。
主讲过《数学分析》、《数学分析续讲》、《复变函数与积分变换》、《常微分方程》、《高等数学》和《线性代数》等课程。
现为国外SCI数学期刊AML、CAM、MIA和JIA等期刊的审稿人。近几年,在国内外学术期刊AML、CAM、MIA、JIA和AAA等发表论文60余篇,其中36篇被SCI检索收录。拟Newton法圆盘迭代收敛性的研究从 L.W.Ehrlich,I.Gargantini,到王兴华、郑士明,成果丰硕,朱灵得到了单零点的二步圆盘迭代收敛性初始条件和复零点的一步圆盘迭代收敛性初始条件,前者无人涉及,后者为至今最佳结果。关于拟牛顿法二步圆盘迭代收敛性初始条件的文章在SCI杂志CAM 2005年第四季排行榜Top25上排名第10,2006年第一季上升至第4名。Durand-Kerner法的圆盘迭代收敛性经 E.Durand, I.O. Kerner,I. Gargantini,P.Henrici, 王兴华、郑士明等不断努力,成果已很丰富,朱灵一举解决了Durand-Kerner法的多步圆盘迭代收敛性初始条件;另外,关于Jordan、Redheffer、Wilker 和Shafer-Fink不等式以及其他一些三角函数不等式的研究已居世界领先地位。特别引人注目的是首次将单调性的罗比达法则应用到Jordan不等式的推广上,这方面的三篇论文作为基础性文献被广泛引用。论文被引用达百余篇次。
担任第四届全国不等式学术年会学术委员会委员,当选全国不等式研究会常务理事。
近六年发表的主要论文:
1、Ling Zhu, A modified Newton method in parallel circular iteration of single-step and double-step,Computers & Mathematics with Applications, 50(2005), 1513-1524. (SCI)
2、Ling Zhu, On the convergent condition of Durand-Kerner method in parallel circular iteration of multi-step,Applied Mathematics and Computation, 169 (2005) , 9–191. (SCI)
3、Ling Zhu, On the convergent conditions of Durand-Kerner method in parallel circular iteration of single-step and double-step, Applied Mathematics and Computation, 157 (2004),623–636. (SCI)
4、Ling Zhu, On the convergent condition of Newton-like method in parallel circular iteration for simultaneously finding all multiple zeros of a polynomial, II, Applied Mathematics and Computation, 168 (2005),677–685. (SCI)
5、Ling Zhu, On Shafer-Fink inequalities, Mathematical Inequalities & Applications, 8(2005), 571–574. (SCI)
6、Ling Zhu, A new simple proof of Wilker's inequality,Mathematical Inequalities & Applications, 8 (2005), 749–750. (SCI)
7、Ling Zhu, Sharpening Jordan’s inequality and the Yang Le inequality, Applied Mathematics Letters, 19 (2006), 240–243. (SCI)
8、Ling Zhu, Sharpening of Jordan's inequalities and its applications, Mathematical Inequalities & Applications, 9 (2006), 103–106. (SCI)
9、Ling Zhu, On the convergent condition of Newton-like method in parallel circular iteration for simultaneously finding all multiple zeros of a polynomial, Applied Mathematics and Computation, 152 (2004), 37–846. (SCI)
10、Ling Zhu, Sharpening Jordan’s inequality and Yang Le inequality, II, Applied Mathematics Letters, 19 (2006), 990–994. (SCI)
11、Ling Zhu, On Shafer-Fink-type inequality, Journal of inequalities and applications, Volume 2007 (2007), Article ID 67430, 4 pages, doi:10.1155/2007/67430. (SCI)
12、Ling Zhu, A solution of a problem of Oppeheim, Mathematical inequalities & Applications, 10(2007),57–61. (SCI)
13、Ling Zhu, On Wilker-type inequalities, Mathematical inequalities and applications, 3(10),10 (2007), 727–731. (SCI)
14、Ling Zhu, A general refinement of Jordan-type inequality, Computers and Mathematics with Applications, 55(2008), 498–2505. (SCI)
15、Ling Zhu, New inequalities for means in two variables, Mathematical Inequalities & Applications, 11 (2008), 229–235. (SCI)
16、Ling Zhu, Some new inequalities for means in two variables, Mathematical Inequalities & Applications, 11 (2008), 443–448. (SCI)
17、Ling Zhu and Jinju Sun, Six new Redheffer-type inequalities for circular and hyperbolic functions, Computers and Mathematics with Applications,56(2008,522–529. (SCI)
18、Arpad Baricz and Ling Zhu, Extension of Oppenheim's Problem to Bessel Functions, Journal of Inequalities and Applications, Volume 2007 (2007), Article ID 82038, 7 pages , doi:10.1155/2007/82038. (SCI)
19、Haiping Liu and Ling Zhu, New Strengthened Carleman's Inequality and Hardy's Inequality, Journal of Inequalities and Applications, Volume 2007 (2007), Article ID 84104, 7 pages, doi:10.1155/2007/84104. (SCI)
20、Lu Zhang and Ling Zhu, A new elementary proof of Wilker's inequalities, Mathematical Inequalities & Applications, 11(2007), 149–151. (SCI)
21、Ling Zhu, A general form of Jordan's inequalities and its applications, Mathematical inequalities & Applications, 11 (2008), 655–665. (SCI)
22、Ling Zhu, New Inequalities of Shafer-Fink Type for Arc Hyperbolic Sine, Journal of Inequalities and Applications, Volume 2008 (2008), Article ID 368275, 5 pages. doi:10.1155/2008/368275. (SCI)
23、Ling Zhu, General forms of Jordan and Yang Le inequalities, Applied Mathematics Letters, 22 (2009) 236–241. (SCI)
24、Ling Zhu, Sharpening Redheffer-type inequalities for circular functions,Applied Mathematics Letters, 22 (2009) 743-48. (SCI)
25、Wenhai Pan and Ling Zhu, Generalizations of Shafer-Fink-Type Inequalities for the Arc Sine Function,Journal of Inequalities and Applications,2009. (SCI)
26、Ling Zhu, Some New Wilker Type Inequalities for Circular and Hyperbolic Functions, Abstract and Applied Analysis, 2009. (SCI)
27、Ling Zhu, Some New Inequalities of the Huygens Type,Computers and Mathematics with Applications, 58 (2009) 1180-182. (SCI)
28、Ling Zhu, A Source of Inequalities for Circular Functions,Computers and Mathematics with Applications, 58 (2009) ,1998-2004. (SCI)
29、Ling Zhu, Jordan type inequalities involving the Bessel and modified Bessel functions, Computers and Mathematics with Applications, 2009. (SCI)
30、Ling Zhu, A general form of Jordan-type double inequality involving the generalized and normalized Bessel functions, Applied Mathematics and Computation, 2010. (SCI)
31、Ling Zhu, Generalized Lazarevic’s Inequality and Its Applications: Part II,
Journal of Inequalities and Applications, 2010. (SCI)
32、Ling Zhu and Jiukun Hua, Sharpening the Becker-Stark Inequalities, Journal of Inequalities and Applications, 2010. (SCI)
33、Ling Zhu, Sharp the Becker-Stark Inequalities for Bessel functions, Journal of Inequalities and Applications, 2010. (SCI)
34、Ling Zhu, Inequalities for Hyperbolic Functions and Their Applications, Journal of Inequalities and Applications, 2010. (SCI)
35、Qiu Yuyang and Ling Zhu, THE BEST APPROXIMATION OF THE SINC FUNCTION BY A POLYNOMIAL OF DEGREE N WITH THE SQUARE NORM, Journal of Inequalities and Applications, 2010. (SCI)